Review

3D whole body scanners revisited

H.A.M. Daanen a,b,c,⇑, F.B. Ter Haar a

a TNO, PO Box 23, 3769ZG Soesterberg, The Netherlands
b Amsterdam Fashion Institute, CREATE-IT Applied Research, Amsterdam University of Applied Sciences, The Netherlands
c MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands

Article info

Article history:
Received 13 June 2013
Received in revised form 26 July 2013
Accepted 21 August 2013
Available online 28 August 2013

Keywords:
Whole-body-scanners
Anthropometry
Garments

Abstract

An overview of whole body scanners in 1998 (H.A.M. Daanen, G.J. Van De Water. Whole body scanners, Displays 19 (1998) 111–120) shortly after they emerged to the market revealed that the systems were bulky, slow, expensive and low in resolution. This update shows that new developments in sensing and processing technology, in particular in structured light scanners, have produced a new generation of easy to transport, fast, inexpensive, accurate and high resolution scanners. The systems are now moving to the consumer market with high impact for the garment industry. Since the internet sales of garments is rapidly increasing, information on body dimensions become essential to guarantee a good fit, and 3D scanners are expected to play a major role.

Contents

1. Introduction ... 270
2. 3D scanning systems .. 270
 2.1. Laser line systems .. 271
 2.2. Structured light systems .. 271
 2.3. Multi-view camera system ... 271
 2.4. Millimeter waves .. 271
3. Software ... 273
 3.1. Optimization and repair of scanned images ... 273
 3.2. Databases of 3D scans .. 273
 3.3. Dedicated application software for the garment industry 274
 3.3.1. Competing techniques for fit of garments ... 274
 3.3.2. 3D scanner data for garment sizing ... 274
4. Conclusion ... 274
Acknowledgements .. 274
References ... 274

1. Introduction

At the end of the previous century the first 3D whole body scanners emerged to the market [1]. These systems were generally rather bulky, expensive (several hundred thousands of dollars for laser based systems) and had resolution in the order of a few mm. In particular the development of megapixel CCD-chips contributed to higher resolution and improved accuracy of 3D scan images. The technology has improved over the last decade and this article aims to give an overview of existing systems and new directions of development, in particular for the clothing industry.

2. 3D scanning systems

The basic technologies available in 1998 were laser scanning, patterned light projection and stereophotogrammetry. New techniques that came to the market are based on millimeter waves and infrared waves.