Holland High Tech: HiTMat Sensor System for Early Detection of Veterinary Diseases

Holland High Tech: HiTMat Sensor System for Early Detection of Veterinary Diseases

Many (veterinary) diseases are accompanied by the secretion of Volatile Organic Compounds (VOCs) in a specific composition. Detection of this VOC mixture in very low concentrations could help early detection, with possibilities for curing and prevention of spreading. To this end, the availability of a versatile, cheap, and yet very sensitive electronic nose system is needed. Such a system would consist of a generic sensor platform, based on micro- or nanotechnology in order to make it sufficiently sensitive, coated with capture layers, specific for the application. 

Because the capture layers cannot be made 100% specific for a given VOC, the readout of an array of sensors, each coated with a different layer, will have to be processed to yield a fingerprint of the composition of the mixture. This system is mimicking the way the (human) olfactory system works, where a pattern of responses from various odorant receptors in the nose is recognised as a specific smell. Hence, the name of an electronic nose. 

Early detection of diseases is only one of the many challenges in society where cheap, yet sensitive sensor platforms for VOC detection in air would be of great benefit. Over the years, applications have been identified in prevention of food spoilage (rotting of crop), forensics (laboratories for synthetic drugs, explosives), safety (CO detection in low concentrations at home, wearable chemical sensors in plants, forest fires), to preventive maintenance (changes in VOC composition to indicate lubrication wear-out). 

To this end, the applicants have taken up the challenge to try and write a proposal to be submitted in a PPS call in 2020, aimed at developing a cheap, yet very sensitive VOC detection system based on electronic nose principles. The aim is to bring together experts, both from industry and from science, in the fields of sensor devices, chemistry of functional thin layers, read-out electronics and data processing. In this HiTMaT project we plan to carry out a pilot study to check the feasibility and the current attainable accuracy with existing state-of-the-art technologies, which have never been combined to be used as VOC sensors. 


In the proposed project we plan to pursue three separate goals:

  1.  We want to study the ultimate sensitivity of the combination of a photonic sensor platform (specifically a MicroRingResonator, or MRR), designed and manufactured by LioniX International BV, which will be functionalised with a capture layer made of polymer brushes. To this end, the chemistry of the polymer brushes needs to be modified at the University of Twente, in order to allow them to adhere to the Si3N4 top layer of the MRR device. Subsequently, a series of measurements needs to be carried out by Saxion University of Applied Sciences, in order to determine the ultimate sensitivity of the complete system towards acetone vapour at low concentrations (<10 ppm).
  2. We want to analyse the composition of a number of gas samples obtained via Avivet, derived from blood lice infected stables. This analysis should provide us with a rough understanding of the specific VOCs to be detected and at what levels they are present.
  3. Finally, we want to dedicate part of the available budget and time to bringing together relevant partners within the Netherlands, both from Science and from Industry, to prepare the consortium for the PPS proposal, currently envisioned to be submitted in 2020. With many of the potential partners already a collaboration or in-depth discussion about this idea are in place, so there is a solid base to start from.

Looptijd: 1 november 2019 - 30 april 2021
Projectleider: Cas Damen, , E: c.a.j.damen@saxion.nl
Partners: LioniX International BV, Universiteit van Twente en AviVet BV